Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.02.578553

ABSTRACT

Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a Lymphoid Organ-Chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 Spike protein mimicked a vaccine boost by inducing a massive amplification of Spike-specific memory B cells, plasmablast differentiation, and Spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine boosting strategies.


Subject(s)
Severe Acute Respiratory Syndrome
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.20.492832

ABSTRACT

ABSTRACT SARS-CoV-2 remained genetically stable during the first three months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide, and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. AUTHOR SUMMARY The successive emergence of SARS-CoV-2 variants is fueling the COVID pandemic, thus causing a major and persistent public health issue. The parameters involved in the emergence of variants with higher pathogenic potential remain incompletely understood. The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions, and resulting in viral particles with higher infectious capacity. The Alpha and the Delta variants that spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic when compared to the original SARS-CoV-2 strain. Interestingly, Alpha and Delta both carried mutations in a spike cleavage site that needs to be processed by cellular proteases prior to viral entry. The cleavage site mutations P681H/R made the Alpha and Delta spikes more efficient at viral fusion, by generating a higher fraction of cleaved spikes subunits S1 and S2. We show here that the early D614G mutation and the late P681H/R mutations act synergistically to increase the fusion capacity of SARS-CoV-2 variants. Specifically, viruses with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite to the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.

SELECTION OF CITATIONS
SEARCH DETAIL